Azotemia

<table>
<thead>
<tr>
<th>Condition</th>
<th>Facts/Cause</th>
<th>Presentation/CS</th>
<th>Diagnosis</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Azotemia</td>
<td>† Blood Urea Nitrogen (BUN) &/or creatinine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>† Types: prerenal, renal or postrenal azotemia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>† Differentiating the type is important for accurate diagnosis, treatment & prognosis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>† Uremia: clinical syndrome resulting from the accumulation of metabolic waste products due to renal failure</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prerenal azotemia

- ‡ Renal perfusion causing ‡ glomerular filtration of metabolites
 - Results in ‡ BUN &/or creatinine in bloodstream
 - Urine concentration ability remains normal (tubular function remains normal)
- If decreased perfusion corrected rapidly kidney will return to normal function
- If not corrected: renal ischemia & kidney destruction

Postrenal azotemia

- ‡ Blockage of urine outflow
- ‡ Oliguria or anuria
- ‡ Hyperkalemia

DDx: Azotemia

- ‡ BUN - normal creatinine - normal GFR
 - High protein diet
 - Excess protein catabolism
 - Intestinal bleeding
 - Fever
 - ‡ Fractional reabsorption of urea as with dehydration

Causes - prerenal azotemia

- Dehydration
- Shock
- Hypoadrenocorticism
- Heart failure

Prerenal azotemia

- Reduced renal perfusion
- ‡ BUN & creatinine
- ‡ Urine specific gravity > 1.030

Renal Azotemia

- Loss of 75% of nephrons
- ‡ BUN & creatinine
- ‡ Urine specific gravity < 1.017

Postrenal azotemia

- Blockage of urine outflow
- ‡ BUN & creatinine
 - Oliguria or anuria
 - Hyperkalemia

Kidney normal

- Restore circulating fluid volume & renal perfusion
- Correct electrolyte abnormalities
- Treat cause:
 - Dehydration: fluids
 - Shock: fluids, steroids
 - Hypoadrenocorticism: fluids
 - Heart failure: ???

Prognosis

- Usually resume normal function when re-perfusion reestablished if not prolonged ischemia

Reprinted by permission from SUDZ Publishing, Copyright 2012, All rights reserved

Pasquini's Guide to Small Animal Clinics is available from [ZukuShop bookstore](#) and [SUDZ publishing](#)
Renal Review - Azotemia, PU/PD, Urolithiasis, Incontinence, Glomerulonephropathy

Guide to Sm An Clinics, Pasquini, 3rd Edition

<table>
<thead>
<tr>
<th>Condition</th>
<th>Facts/Cause</th>
<th>Presentation/CS</th>
<th>Diagnosis</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renal azotemia</td>
<td>✷️ GFR due loss of > 75% of nephrons</td>
<td>• Acute</td>
<td>• ↑ BUN & creatinine</td>
<td>• Acute: - Support until repair itself</td>
</tr>
<tr>
<td></td>
<td>• Renal diz resulting in azotemia = renal failure</td>
<td>- Anuric, oliguric, occasionally polyuric</td>
<td>• Acute & chronic</td>
<td>• Fluids, Tx hyperkalemia & acidosis</td>
</tr>
<tr>
<td></td>
<td>- Acute renal failure: reversible or irreversible</td>
<td>- Chronic</td>
<td>• Low SpG < 1.017</td>
<td>• Initiate urine flow (Lasix, mannitol)</td>
</tr>
<tr>
<td></td>
<td>- Chronic renal failure: irreversible</td>
<td>- PU/PD</td>
<td></td>
<td>• Chronic: - NO cure, palliative</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- GI (vomiting & diarrhea)</td>
<td></td>
<td>- Fluids</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Oral ulcers</td>
<td></td>
<td>• Diet: restrict proteins & phosphorus (Hill's k/d)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cause renal azotemia</td>
<td>Prognosis:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Acute renal failure</td>
<td>• Acute: may be reversed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Ischemia (prerenal)</td>
<td>• Chronic: irreversible</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Dehydration</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Hypovolemia</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Toxins</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Ethylene glycol</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Aminoglycosides</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Heavy metals</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Hypercalcemia</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Infections (e.g., pyelonephritis)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Others</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Chronic renal failure</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postrenal azotemia</td>
<td>• Blockage of urine outflow</td>
<td>• Oliguria</td>
<td>• ↑ BUN & creatinine</td>
<td>• Hyperkalemia - priority</td>
</tr>
<tr>
<td></td>
<td>• Hyperkalemia develops (potassium can't be eliminated)</td>
<td>• Straining</td>
<td>• Oliguria or anuria</td>
<td>• Unblock animal</td>
</tr>
<tr>
<td></td>
<td>- Life-threatening: effects cardiac conduction, causing bradycardia & death</td>
<td>• Abdominal discomfort</td>
<td>• CS: dysuria, discomfort</td>
<td>• Cystocentesis if can't immediately unblock</td>
</tr>
<tr>
<td></td>
<td>- Initially kidneys resume normal function if corrected. With time obstruction may result in renal lesion; e.g., hydronephrosis</td>
<td>• Sequelae:</td>
<td>• ECG (hyperkalemia)</td>
<td>• Fluid therapy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Heart failure: hyperkalemia</td>
<td>- Bradycardia</td>
<td>- Sodium bicarbonate: 0.5-1 mmol/kg by slow IV over 15 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Hydronephrosis</td>
<td>- Spiked T-waves</td>
<td>- 20% dextrose: 0.5-1 g/kg IV w/ ≤1 U regular insulin per 3 g dextrose</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Absence of P-waves</td>
<td>- 10% calcium gluconate: up to 0.5-1 g/kg IV. Rapid, but short-lived effect (minutes)</td>
</tr>
<tr>
<td>Cause - postrenal azotemia</td>
<td>• Urinary obstruction</td>
<td></td>
<td>• Check creatinine of abdominal fluid if rupture suspected</td>
<td>Prognosis:</td>
</tr>
<tr>
<td></td>
<td>- Calculi: renal pelvis, ureter or urethra</td>
<td></td>
<td></td>
<td>• Good if corrected</td>
</tr>
<tr>
<td></td>
<td>- Tumor block</td>
<td></td>
<td></td>
<td>• Guarded if renal lesions</td>
</tr>
<tr>
<td></td>
<td>- Entrapment of urinary tract (hernia)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Trauma, stricture</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Iatrogenic: surgery or catheterization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Ruptured urinary tract</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reprinted by permission from SUDZ Publishing, Copyright 2012, All rights reserved

Pasquini's Guide to Small Animal Clinics is available from ZukuShop bookstore and SUDZ publishing
Renal Review-Azotemia, PU/PD, Urolithiasis, Incontinence, Glomerulonephropathy

Polyuria & Polydipsia

Condition
- Increased thirst & urine production
 - Urine production > 25 ml/lb/day (50 ml/kg/day)
 - Water consumption > 50 ml/lb/day (100 ml/kg/day)

Facts/Causes
- Manifestation of diz; not a diagnosis
- PU & PD usually exist concurrently
- Mechanism of polydipsia:
 - Low plasma osmolality stimulates chemoreceptors in thirst center (hypothalamic supraoptic nucleus)
 - Posterior pituitary gland releases ADH (antidiuretic hormone)
 - Renal response to ADH is to concentrate urine requiring 1/3rd functioning nephrons & a hypertonic renal medullary interstitium
 - 2/3rds nonfunctional nephrons for kidney not to concentrate urine (polyuria)

Presentation
- Polyuria
 - Nocturia
 - Inappropriate urination
 - Incontinence
 - Pollakiuria (frequent urination)

Diagnosis
- Polydipsia (excess drinking)

DDx - Polyuria/Polydipsia
- Dipsogenic diabetes insipidus (DDI)/Psychogenic polydipsia
- Pituitary diabetes insipidus
- 1° renal diz
 - Chronic primary renal failure
 - Hydronephrosis??
 - Renal amyloidosis
 - Chronic pyelonephritis
 - Familial renal diz
 - Primary renal glycosuria
 - Fanconi’s Syndrome
 - Acute renal failure

- Pyometra (uterine infection)
- Hyperadrenocorticism
- Liver diz
- Hypercalcemia
- Hyperparathyroidism
- Hypoparathyroidism
- Hyperthyroidism
- Hypoadrenocorticism
- Lymphosarcoma
- Pheochromocytoma
- Diabetes mellitus

History (empty water dish, constant drinking)
- Lymphadenopathy (lymphoma), cataracts (diabetes mellitus), symmetrical alopecia (hyperadrenocorticism), vaginal discharge (pyometra), small kidney (chronic FR)

Metabolism cage: Urine volume: 25-45 ml/kg/24 hrs

Urinalysis:
- USpG (urine specific gravity)
 - > 1.030 unlikely to be polyuria
 - < 1.007 (hyposthenuria) tentative Dx of CDI, NDI or PPD

>1.025 + PU/PD suggests hyperadrenocorticism, diabetes mellitus or renal glycosuria

Blood values:
- Azotemia (*+ BUN/creatinine*) indicates renal diz
- Liver enzymes
- CBC: infection (pyometra)
- Radiographs, ultrasound
- Other tests
 - Lymph node biopsy (lymphoma)
 - Low dose dexamethasone suppression test (hyperadrenocorticism)

Provocative tests to differentiate normal psychogenic polydipsia, hyperadrenocorticism, pituitary DI, nephrogenic DI or medullary washout
- **Water deprivation** if PU/PD & no signs or diz (kidney, liver, etc.)
 - USG > 1.025 - psychogenic polydipsia or Cushing’s diz
 - USG < 1.025 - then do ADH test

ADH test
- USG > 1.025 - pituitary diabetes insipidus (no ADH)
- USG < 1.025 - then do gradual H2O deprivation test

Gradual H2O test (to correct possible medullary washout)
- USG > 1.025 - psychogenic polydipsia or Cushing’s diz
- USG < 1.025 - then do ADH test

ADH + gradual H2O deprivation tests
- USG < 1.025 - kidney unresponsive to ADH
- USG > 1.025 - pituitary diabetes insipidus
Water deprivation test:
- Determines if:
 - 1. ADH released in response to subclinical dehydration
 - 2. If kidneys can respond to ADH & concentrate urine
- Contraindications (potentially dangerous - death):
 - Dehydration
 - Azotemia (BUN, creatinine)
 - Hypercalciemia
- Terminate test when:
 - Urine concentrated > 1.025
 - > 5% weight loss
 - Azotemia
 - Dehydration

Abrupt water deprivation test
- Normal animal concentrate USG to 1.075 - cats: 1.045 - dogs: > 1.285 considered adequate for test
- Negative result (failure to concentrate - USG < 1.025) w/ or other laboratory abnormalities indicates neurogenic or nephrogenic diabetes insipidus &/or medullary washout (DDI)

Gradual water deprivation test
- For psychogenic polydipsia w/ medullary washout (can’t concentrate on abrupt test), allows gradient to be reestablished
- Procedure: Reduce water intake by 5% daily
- Results: Negative result (failure to concentrate) w/ renal diz or laboratory abnormalities indicates neurogenic or nephrogenic diabetes insipidus not DDI

ADH response test (after abrupt of gradual H2O deprivation tests)
- If inadequate concentration after water deprivation test
- Tests renal tubular ability to concentrate urine
- Procedure:
 - Vasopressin (Pitressin®) IM
 - Measure USG at 30, 60, 90 & 120 min
- Interpretation:
 - Negative water deprivation + positive ADH concentration > 1.285 diagnostic of neurogenic DI
 - Both negative water deprivation & negative ADH tests indicates nephrogenic DI or DDI if after abrupt H2O deprivation

NO azotemia (normal BUN)

A abrupt H2O test
- USG < 1.025
 - ADH test
 - USG < 1.025
 - Gradual H2O test
 - USG < 1.025
 - ADH test
 - USG > 1.025
 - Evaluate for hyperadrenocorticism
 - Normal - Psychogenic polydipsia (medullary washout)
 - USG < 1.025
 - ADH test
 - USG > 1.025
 - Kidney DI (NDI)

Polyuria (USG < 1.025 & normal serum glucose)

Signs or kidney diz (low BUN)

Signs or liver diz

Liver diz

Reprinted by permission from SUDZ Publishing, Copyright 2012, All rights reserved

Pasquini’s Guide to Small Animal Clinics is available from ZukuShop bookstore and SUDZ publishing
Renal Review - Azotemia, PU/PD, Urolithiasis, Incontinence, Glomerulonephropathy

Diabetes insipidus
- **M8k 412, 1734; H2B 502, E-hb 85, 549; Dx-L 39**
- **3 basic types - Also see Endo pg 670**
 1. Nephrogenic DI (NDI) partial or complete renal tubule insensitivity to ADH
 2. Central DI (CDI): partial or complete primary deficiency of ADH
 3. Dipsogenic DI or psychogenic polydipsia/polyuria: excessive water intake
- **Neg H2O & ADH test**
- **Neg. H2O, positive ADH**
- **Positive H2O (abrupt or gradual)**

Nephrogenic diabetes insipidus, NDI
- **M8k 412, 1734; E-hb 666, 85, H3B 514; H2B 502, 564; SAP 268, 812; IM-WW 338; IM 458, 528; IM-WW 338; SmH 514, 130, 1020; E 1804; Cat 1410; R&P 2; R&E-M 251; Lab-C 219; Psy-R 195; Ddx 68; Dx-L 39**
- **Renal tubules nonresponsive to ADH**
 - Distal tubules & collecting ducts
 - ADH levels normal to increased
 - Partial or complete unresponsiveness to ADH
- **Causes:** see rounded box
 - Congenital: rare
 - Acquired secondary NDI
 - Renal & metabolic disorders affecting renal tubules' ability to respond to ADH
- **Most acquired forms reversible following correction of cause**
 - Similar CS, Hx & physical to pituitary diabetes insipidus, except for trauma

Unresponsive renal tubules
- **CS: PU/PD**
- **Dx: No response to water or ADH tests**
- **Tx: Tx cause, Unlimited H2O**

URINARY SYSTEM

NUPTERY SYSTEM

Diabetes insipidus
- **Neg H2O & ADH test**
- **Neg. H2O, positive ADH**
- **Positive H2O (abrupt or gradual)**

Nephrogenic diabetes insipidus, NDI
- **Neg H2O, positive ADH**
- **Positive H2O (abrupt or gradual)**

Nephrogenic diabetes insipidus
- **2nd nephrogenic DI**
 - Renal disorders
 - Acute renal failure
 - Chronic primary renal failure
 - Hydronephrosis
 - Renal amyloidosis
 - Chronic pyelonephritis
 - Familial renal dizz
 - Primary renal glycosuria
 - Fanconi's Syndrome
 - 2nd renal disorders
 - Pyometra (urinary infection)
 - Diabetes mellitus
 - Liver dizz
 - Lymphosarcoma
 - Pheochromocytoma
 - Endocrine
 - Hyperadrenocorticism
 - Hypoadrenocorticism
 - Hyperthyroidism
 - Hypoparathyroidism
 - Metabolic disorders
 - Hypercalcemia
 - Hypokalemia
 - Drugs
 - Corticosteroids
 - Anticonvulsants
 - Diuretic
 - Congenital 1st NDI (rare)

Prognosis:
- **2nd NDI:** depends on response of underlying cause
- **1st NDI (rare) guarded to poor**

Reprinted by permission from SUDZ Publishing, Copyright 2012, All rights reserved

Pasquini’s Guide to Small Animal Clinics is available from ZukuShop bookstore and SUDZ publishing
<table>
<thead>
<tr>
<th>Condition</th>
<th>Facts/Cause</th>
<th>Presentation/CS</th>
<th>Diagnosis</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pituitary diabetes insipidus, Central diabetes insipidus, CDI, Neurogenic diabetes insipidus, Neurohypophyseal diabetes insipidus</td>
<td>Lack of ADH (antidiuretic hormone); either formation &/or release of endogenous ADH</td>
<td>PD/PU</td>
<td>CS: PU/PD: Hx PU/PD > 100 m/l/kg/d normal 40–70</td>
<td>Not mandatory if unlimited water</td>
</tr>
<tr>
<td></td>
<td>Cause of CDI (central DI)</td>
<td>Nocturia</td>
<td>Urine specific gravity: Dog 1.000–1.007, Cat 1.006–1.012</td>
<td>Unlimited water paramount</td>
</tr>
<tr>
<td></td>
<td>- Idiopathic (most common)</td>
<td>± Weight loss (if preoccupied with drinking)</td>
<td>Partially concentrated</td>
<td>Desmopressin (DDAVP® - synthetic vasopressin analog) drops in conjunctival sac</td>
</tr>
<tr>
<td></td>
<td>- CNS trauma</td>
<td>± CNS signs (expanding tumor)</td>
<td>Physical exam: usually unremarkable, m/b thin (thirst overshadows hunger)</td>
<td>- Limit water for couple of hours after Tx to avoid over hydration</td>
</tr>
<tr>
<td></td>
<td>- CNS infection</td>
<td>Stupor, disorientation, circling, pacing, convulsions</td>
<td>Dehydration if water unavailable for 4-6 hours</td>
<td>- Repostol vasopressin (Pitressin®) IM</td>
</tr>
<tr>
<td></td>
<td>- Parasitic migration</td>
<td>Distended abdomen related to over distention of bladder with urine</td>
<td>Lab: persistent hypotension, CBC normal or consistent with dehydration</td>
<td>- Chlorpropamide (Diabinese®) sulfonamide agent for partial CDI; potentiates renal tubular effect of ADH. Ineffective in complete CDI & NDI needs some ADH</td>
</tr>
<tr>
<td></td>
<td>- Neoplasia (cranioencephalonal metastatic tumors - mammary carcinoma, lymphoma, melanoma, pancreatic carcinoma) or diminished blood flow</td>
<td>- Congenital defects (rare)</td>
<td>Water deprivation + ADH tests</td>
<td>Chlorothiazide diuretics + oral salt restriction may reduce urine output by inhibiting sodium resorption; up to 60% reduction</td>
</tr>
<tr>
<td></td>
<td>- ADH acts on distal tubules & collecting ducts † reabsorption of water</td>
<td>- ADH = water diuresis (polyuria)</td>
<td>- Water deprivation = SpG < 1.025 = (CDI or nephrogenic)</td>
<td>Chlorothiazide (Diumil®), Hydrochlorothiazide</td>
</tr>
<tr>
<td></td>
<td></td>
<td>** Psychogenic polydipsia, Primary polydipsia, Dipsogenic diabetes insipidus, Compulsive water drinking</td>
<td>- ADH = water diuresis (polyuria)</td>
<td>Pituitary or hypothalamic tumors</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M8k 412, 1734; E-hb 85; IM 459; H2B 502; Smin 514; Ddx 68; Dx-L 39</td>
<td></td>
<td>- Cobalt radiation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lack of ADH</td>
<td>Diuretic effects</td>
<td>- Caramustine (BCNU)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CS: PU/PD, ± CNS</td>
<td>Psychogenic polydipsia</td>
<td>- Unpredictable; dramatic improvement in some</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dx: + ADH tests</td>
<td>Other causes of PU/PD</td>
<td>Desmopressin</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tx: Unlimited water, Drugs</td>
<td></td>
<td>Progabide, Progabine</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Progabide, Progabine, Progabine, Progabine</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Progabide, Progabine, Progabine, Progabine</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Progabide, Progabine, Progabine, Progabine</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Progabide, Progabine, Progabine, Progabine</td>
</tr>
</tbody>
</table>

Psychogenic polydipsia
- Cause:
 - Disorder of thirst centers, resulting in 1° PD
 - Behavior problem
 - Pharmacologic agents: salt, diuretics, glucocorticoids, fluids, anticonvulsants
 - Polyuria to rid excessive H2O
 - Large breed dogs
 - Kidney is usually functional
 - Causes medullary washout

PU/PD
- Hx (large breeds), CS (PU/PD)
- Urinalysis: USG 1.001-1.003
- Water deprivation = concentrated urine
 - Abrupt water deprivation: diagnoses 2/3rds of cases
 - Gradual water deprivation in other third to eliminate medullary washout
 - Results in concentrated urine > 1030 dog, 1035 cat

Valium
- Not mandatory if unlimited water
- Unlimited water paramount
- Desmopressin (DDAVP® - synthetic vasopressin analog) drops in conjunctival sac
- Limit water for couple of hours after Tx to avoid over hydration
- Repostol vasopressin (Pitressin®) IM
- Chlorpropamide (Diabinese®) sulfonamide agent for partial CDI; potentiates renal tubular effect of ADH. Ineffective in complete CDI & NDI needs some ADH
- Chlorothiazide diuretics + oral salt restriction may reduce urine output by inhibiting sodium resorption; up to 60% reduction
- Chlorothiazide (Diumil®), Hydrochlorothiazide
- Pituitary or hypothalamic tumors
 - Cobalt radiation
 - Caramustine (BCNU)
 - Unpredictable; dramatic improvement in some

Zukureview
Reprinted by permission from SUDZ Publishing, Copyright 2012, All rights reserved

Pasquini's Guide to Small Animal Clinics is available from ZukuShop bookstore and SUDZ publishing
Renal Review - Azotemia, PU/PD, Urolithiasis, Incontinence, Glomerulonephropathy

Urolithiasis

<table>
<thead>
<tr>
<th>Condition</th>
<th>Facts/Causes</th>
<th>Presentation</th>
<th>Diagnosis</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dog</td>
<td>Uroliths: crystal of minerals in matrix material</td>
<td>Variable depending on size, # & location of uroliths</td>
<td>Hx, CS</td>
<td>ABs for 2-3 wks for UTI & struvite</td>
</tr>
<tr>
<td></td>
<td>95% organic or inorganic crystalloids, < 5% organic matrix</td>
<td>Asymptomatic in some:</td>
<td>Palpation: bladder & urethra</td>
<td>- Ampicillin if no culture or trimethoprim-sulfonamide</td>
</tr>
<tr>
<td></td>
<td>Struvite #1 in dog & cats</td>
<td>- Lower UTI (cystitis/urethritis)</td>
<td>Blood values</td>
<td>- Give after urination & discourage urination as long as possible to keep drug where needed</td>
</tr>
<tr>
<td></td>
<td>Dog: < 3% prevalence, 3-7 yrs old</td>
<td>- Dysuria (painful)</td>
<td>- CBC usually normal leukocytosis, UTI</td>
<td>- Re-culture 5 days after stop ABs, if + reinstitute</td>
</tr>
<tr>
<td></td>
<td>Location:</td>
<td>Pollakiuria (frequent)</td>
<td>- Postrenal azotemia: in obstruction</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Urinary bladder: bladder stones</td>
<td>Bloody (hematuria)</td>
<td>Urinalysis (UA): UTI</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Urethra: partial or complete obstruction</td>
<td>Strong ammonium odor</td>
<td>- Hematuria</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Ureter calculi (rare): hydronephrosis</td>
<td>Lumbar pain</td>
<td>- Pyuria/Bacteriuria</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Kidney (rare): pyelonephritis</td>
<td></td>
<td>- Urase producing - Staph. aureus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Usually originate in bladder, but may come from kidney or ureter into bladder</td>
<td></td>
<td>- struvite</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cause in dogs:</td>
<td></td>
<td>± Crystalluria - ID (usually same as uroliths, not always)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- UTI (urinary tract infec:) commonaly present in all, except oxalate uroliths</td>
<td></td>
<td>Urine culture & sensitivity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(cat not due to UTI)</td>
<td></td>
<td>- Radiographic density (see chart)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Staphylococcus aureus or proteus spp (split uses to ammonium)</td>
<td>- Kidneys, ureters & urethra for calcul 0 = not visible</td>
<td>- Ultrasound</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Alkaline urine precipitates</td>
<td>1+ = barely visible</td>
<td>- Uroliths analysis - quantitative (crystallographic)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Metabolic disorders:</td>
<td>2-4+ = readily visible</td>
<td>- Commercial kits not recommended</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Urate:</td>
<td></td>
<td>Hepatic function tests if urate uroliths (except in Dalmatians)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Dalmatian: Inborn error in purine metabolism</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Portal vascular shunts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Cystinuria: cystine uroliths</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Calcium phosphate: hyperparathyroidism</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Dietary factors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- High magnesium alkalinizing - struvite</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Cm gluten or soybean hull diets - silica</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Hi Ca or P diets - calcium phosphate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Idiopathic conditions: Ca oxalate, sterile struvite, silica</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Breeds:

- **Struvite:** Females > males: Miniature Schnauzer, also Welsh Corgis, Dachshunds, Poodles, Pugs, Pekingese, Beagles, Scottish terriers
- **Oxalate:** Males - Miniature Schnauzer, Miniature Poodles, Yorkshire terriers, Lhasa Apso, Shih Tzu & Dalmatians
- **Urate:** Dalmatian (60% of all urate uroliths) Portosystemic shunts (Miniature Schnauzers, Yorkshire terriers, Pekingese)
- **Silica:** German shepherd
- **Cystine:** Males: Dachshund, also Basenji hounds, English bulldogs, Yorkshire terriers, Irish terriers, Chihihauas

DDx:

- UTI
- Neoplasia of bladder
- FUS
- Coagulation disorders

Prevention:

- 5-50% recur
- Diet, urine pH modification & drugs (see chart below)

Monitor monthly for dissolution of uroliths: Complete urinalysis & radiographs; ABs - culture & sensitivity if UTI. If not dissolved after 2 mo, consider surgery

Prognosis: Guarded to good, depending on calculi & owner/dog dietary compliance

Reprinted by permission from SUDZ Publishing, Copyright 2012, All rights reserved

Pasquini's Guide to Small Animal Clinics is available from ZukuShop bookstore and SUDZ publishing
<table>
<thead>
<tr>
<th>Types of stone</th>
<th>Facts/cause</th>
<th>Rads</th>
<th>Diagnosis</th>
<th>Treatment</th>
<th>Prevention</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Dogs & Cats</td>
<td>90% Cats - 60% Dogs</td>
<td>2-4+</td>
<td>pH: alkaline</td>
<td>Med: ABs (UTI)</td>
<td>Control UTI</td>
</tr>
<tr>
<td>- Struvite (magnesium ammonium-phosphate)</td>
<td>Urease-producing bacteria</td>
<td>UTI - urease bacteria (UA)</td>
<td>s/d Hill’s diet (don’t add salt)</td>
<td>c/d Hill’s diet (low-protein, Ca, P)</td>
<td></td>
</tr>
<tr>
<td>- Staph. aureus - dog</td>
<td>Sterile in most cats</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Oxalate (Ca, Mg, & ammonium)</td>
<td>20% - dog - Calciumuria (hyperparathyroidism, excessive Vit D intake, osteolytic neoplasia, hypercalcitonism & prox. renal tubular damage)</td>
<td>4+</td>
<td>UTI</td>
<td>Hypercalcemia</td>
<td>Sx - removal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pH: variable</td>
<td></td>
<td>Rough, quartz-like</td>
<td></td>
</tr>
<tr>
<td>- Urate (ammonium)</td>
<td>Dalmatians & others Hepatic dysfunction/shunts</td>
<td>0-2+</td>
<td>UTI</td>
<td>pH: neutral - acidic</td>
<td>Alkalinate urine (Bicarb)</td>
</tr>
<tr>
<td></td>
<td>5% dog, 4% cats</td>
<td>Smooth, round, oval</td>
<td>u/d diet</td>
<td>Allopurinol</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2+ years old</td>
<td>- Jack-stone</td>
<td>± Correct hepatic diz + k/d</td>
<td>Allopurinol (Zyloprim®)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sx: those that don’t dissolve or obstruct</td>
<td></td>
<td>u/d diet (low purine)</td>
<td></td>
</tr>
<tr>
<td>- Ca-phosphate (apatite)</td>
<td>Metabolic disorders Excessive Ca & P diet, renal tubular acidosis, Hyperparathyroidism</td>
<td>4+</td>
<td>Hypercalcemia</td>
<td>Sx - removal</td>
<td>Acidify urine</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Smooth, round or faceted</td>
<td></td>
<td>s/d diet??</td>
<td>s/d</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Control hypercalcuria - diet?</td>
<td></td>
</tr>
<tr>
<td>• Dog Only</td>
<td>Genetic defect/metabolism</td>
<td>1-2+</td>
<td>pH: acidic Urinary cystine</td>
<td>Med:</td>
<td>u/d diet</td>
</tr>
<tr>
<td>- Cystine (amino acid cystine)</td>
<td>< 2%, 1.5 - 4 years</td>
<td>Smooth, small round to oval</td>
<td>Potassium citrate (alkalinizes)</td>
<td></td>
<td>Potassium citrate (alkalinizes)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>D-penicillamine or MPG</td>
<td>u/d diet</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sx: those that don’t dissolve or obstruct</td>
<td>Don’t breed males</td>
<td></td>
</tr>
<tr>
<td>- Silica calculi</td>
<td>Rare < 2% - Many breeds (Germ. Shepherd) Diet: corn gluten, soybean hulls</td>
<td>2 - 4+</td>
<td>UTI</td>
<td>pH: neutral - acidic</td>
<td>Sx - removal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Jack stone</td>
<td>Meat-based diet, Salt (diuresis)</td>
</tr>
<tr>
<td>• Mixed</td>
<td>15%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Med: ABs (UTI)
- s/d: standard diet
- c/d: controlled diet
- u/d: urinary diet
- > pH: Urine pH should be greater than 7.5
- < pH: Urine pH should be less than 7.5
Renal Review—Azotemia, PU/PD, Urolithiasis, Incontinence, Glomerulonephropathy

FUS

<table>
<thead>
<tr>
<th>Condition</th>
<th>Facts/Causes</th>
<th>Presentation</th>
<th>Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feline urolithiasis</td>
<td>FUS</td>
<td>URINARY SYSTEM</td>
<td>Rationale</td>
</tr>
<tr>
<td>Feline urologic syndrome</td>
<td>Urethral plug, idiopathic lower urinary tract dz, ILUTD; FLUTD, Feline lower urinary tract dz</td>
<td>Calculi w/o obstruction (females & males)</td>
<td>History (house cat, etc.)</td>
</tr>
<tr>
<td>SD</td>
<td>Male > female, house cats 2-6 years</td>
<td>Dribbling of urine</td>
<td>CS (straining to urinate)</td>
</tr>
<tr>
<td>SD</td>
<td>4-10% of all cat hospital visits</td>
<td>Frequent urination (pollakiuria, owners think trying to defecate)</td>
<td>Physical exam - palpation</td>
</tr>
<tr>
<td>SD</td>
<td>Urethral obstruction in males</td>
<td>Strong ammonia-like odor</td>
<td>Obstructed cat</td>
</tr>
<tr>
<td>SD</td>
<td>Cystitis & urethritis in female</td>
<td>Obstruction males</td>
<td>Distended, turgid bladder, inability to express bladder (careful)</td>
</tr>
<tr>
<td>SD</td>
<td>Struvite plugs/uroliths (see box)</td>
<td>Squat & strain (stranguria)</td>
<td>Hard, inflamed, discolored penis</td>
</tr>
<tr>
<td>SD</td>
<td>Cause: unknown</td>
<td>Hematuria, anuria</td>
<td>± Protruding plug</td>
</tr>
<tr>
<td>SD</td>
<td>Predisposing factors:</td>
<td>Lick penis (traumatize)</td>
<td>Thickened bladder wall w/ grafting</td>
</tr>
<tr>
<td>SD</td>
<td>- Bacterial, viral infection</td>
<td>Screaming (vocalization)</td>
<td>Unobstructed cat</td>
</tr>
<tr>
<td>SD</td>
<td>- Decreased activity (house cats, castration, weather, illness, obesity)</td>
<td>Postrenal uremia, depending on duration:</td>
<td>Painful bladder &/or caudal abdomen</td>
</tr>
<tr>
<td>SD</td>
<td>- Dirty litter box</td>
<td>- Anorexia, lethargy, depression</td>
<td>Bladder usually empty</td>
</tr>
<tr>
<td>SD</td>
<td>- Alkaline urine</td>
<td>- ± Vomiting & dehydration</td>
<td>- Lumbar pain</td>
</tr>
<tr>
<td>SD</td>
<td>- High Mg/ammonium diets</td>
<td>- Bradycardia</td>
<td>Blood values (obstructed)</td>
</tr>
<tr>
<td>SD</td>
<td>- Castration</td>
<td>- Hypothermia, muscle weakness</td>
<td>- CBC no specific abnormalities, ± PCV/TP (dehydration), stress leukogram</td>
</tr>
<tr>
<td>SD</td>
<td>- Urethritis/cystitis, urethral abnormalities</td>
<td>- Coma & death in 3-5 days if complete obstruction</td>
<td>Hyperkalemia (may be life threatening)</td>
</tr>
<tr>
<td>SD</td>
<td>- Dry >> canned food</td>
<td>Sequelae:</td>
<td>Acidosis (life-threatening)</td>
</tr>
<tr>
<td>SD</td>
<td>High incidence of recurrence: 30-70%</td>
<td>- Chronic renal dz due to ascending pyelonephritis (especially if repeated catheterization)</td>
<td>± Blood pH & HCO3-</td>
</tr>
<tr>
<td>SD</td>
<td>Penile urethra #1 blockage site</td>
<td>- Rupture bladder</td>
<td>Postrenal azotemia (increased BUN, creatinine), hyperphosphatemia, hyperglycemia (stress)</td>
</tr>
</tbody>
</table>

DDx:
- Constipation (straining)

- **Urethral plugs:** sand in organic matrix, like toothpaste, poorly organized - protein matrix, struvite crystals (magnesium ammonium phosphate) & cellular debris, etiology unknown

- **Urolithiasis: Struvite:** magnesium-ammonium-phosphate 80% of uroliths, sterile 80%, sand-like, crystalluria (microscopic ppt) or urolithiasis: macroscopic aggregates

- **Ammonium urate uroliths:** uncommon; portal vascular anomalies

- **Calcium oxalate uroliths:** 1% of uroliths becoming more common as struvite is decreased due to diet dissolution

- **Calcium phosphate uroliths:** uncommon, hyperparathyroidism

Reprinted by permission from SUDZ Publishing, Copyright 2012, All rights reserved

Pasquini’s Guide to Small Animal Clinics is available from ZukuShop bookstore and SUDZ publishing
Renal Review - Azotemia, PU/PD, Urolithiasis, Incontinence, Glomerulonephropathy

Treatment:
- **Obstruction**
 - **Emergency:** life-threatening hyperkalemia, acidosis, postrenal azotemia or ruptured bladder
 - **IV catheter** (draw blood for electrolyte & acid-base)
 - ** Unblock cat** (see box) (before giving fluids), **sedate**
 - **Massage penis or catheterization**
 - **Cystocentesis** if can't immediately unblock
 - **Indwell catheter** 1-3 days to prevent re-blocking
 - Routine use not recommended, remove as soon as possible (12-36 hours)
 - **Fluids** to stabilize cat & for life-threatening hyperkalemia & acidosis
 - Saline + unblocking will quickly ↓ potassium
 - **Antibiotics** 7-10 days

- **Polyuric renal failure** often ensues following relief of obstruction:
 - Hyponatremia: Salt tablets: 1 gm tid initially PO, normal saline IV to correct
 - Hypokalemia: K+ elixir PO, K+ salts in parenteral fluids (< 20 mEq/hour)
 - Elizabethan collar if self-trauma
 - Monitor for re-blockage

- **Treatment of unobstructed/unplugged cat**
 - Hill’s Feline s/d diet - to dissolve struvite uroliths (acid, low Mg, hi salt)
 - Only long enough to dissolve crystals (30 d past radiographic evidence)
 - Dysuria/stranguria
 - Propantheline bromide (Pro-Banthine®), diazepam (Valium®)
 - Corticosteroids - controversial
 - ABs if infection

- **Surgery:**
 - **Penile urethrostomy** m/b considered w/ multiple recurrence (≥ 2x)
 - Altered cat m/b more prone to cystitis

Unblock cat (before giving fluids)
- **Sedate, don’t stress - fatal arrhythmias w/ catecholamine & hyperkalemia** (not required in moribund cat, but most others, PAINFUL, carefully)
 - Gas anesthesis: mask down - isoflurane & O2
 - Acepromazine: reduce dose < 0.1 mg total IV
 - Ketamine (reduced dose because removed by kidney) < 5 mg/kg IV

- **Massage distal end of penis** to try to dislodge distal plug
 - Protrude penis & massage
 - Keep gentle pressure on urinary bladder (if dislodges, urine will flow, yeah!)
 - Manually empty bladder
 - If this doesn’t work:
 - **Catheterize** (lubricated Tom cat catheter)
 - Extrude penis (pull caudally on prepuce to line the penis up parallel w/ the spine to straighten its normal curve)
 - Advance catheter (gently, if obstruction)
 - Gently flush cath to bladder (occlude penis around catheter)
 - Collect urine for urinalysis & culture
 - Lavage bladder w/ sterile saline to remove all crystalluria (100-200 ml)

Fluids for life-threatening hyperkalemia & acidosis
- **ECG rhythm strip to evaluate**
 - 0.9% saline + unblocking will quickly ↓ potassium
 - If doesn’t: glucose & insulin therapy IV (IU Regular insulin w/1-3g glucose)
 - Bicarbonate if acidic (pH < 7.2) 1-2 mEq/kg IV slowly
 - Calcium gluconate if life-threatening arrhythmias (0.5-1 ml/kg of 10% solution) slowly IV
 - Fluid therapy for dehydration & maintenance, postobstructive diuresis, phenomena in unblocked cats
 - Monitor & replace fluids and electrolytes (K+)

Prevention:
- Tends to recur in 70% of cats
- **Low Mg diet** (Hill’s c/d diet or homemade) < 2.0 mg of magnesium/100 kcal
- Canned food over dry, Mix water w/ food
- Salt food lightly (not if S/D diet)
- Encourage exercise, free choice water
- Urinary acidifiers: methionine, ammonium chloride added to diet if not on c/d or s/d
- Prednisolone considered for persistent hematuria & urethritis
- Clean litter box often

Male, neutered, obese house cat on dry food
CS: Straining, Uremia
Dx: Hx, PE, UA
Tx: Unblock, Fluids, ABs, S/D diet, Sx

Guide to Sm An Clinics, Pasquini, 3rd

Reprinted by permission from SUDZ Publishing, Copyright 2012, All rights reserved

Pasquini’s Guide to Small Animal Clinics is available from ZukuShop bookstore and SUDZ publishing
Renal Review-Azotemia, PU/PD, Urolithiasis, Incontinence, Glomerulonephropathy

Guide to Sm An Clinics, Pasquini, 3rd

Urinary Incontinence

- Inappropriate passage of urine
- Needs to be differentiated from abnormal elimination behavior & inadequate house training
- Middle aged & geriatric dogs > 5 yrs-old
- Definitions:
 - Micturition: voiding of urine
 - 2 stage process: passive storage & active voiding
 - Incontinent: loss of voluntary control of micturition
 - Enuresis: urinary incontinence while animal is asleep
 - Nocturia: urge or need to urinate at night

Causes: Incontinence

- Nonneurogenic
 - Hormone-responsive incontinence
 - Stress incontinence, urethral incompetence
 - Pelvic bladder
 - Urachal remnant
 - Idiopathic urinary incontinence
 - Ectopic ureters
- Neurogenic
 - Lower motor neuron, atonic bladder
 - Upper motor neuron, automatic bladder
 - Detrusor-urethral disorders
 - Urge incontinence, detrusor hyperreflexia
- Others
 - Senility
 - Decreased bladder capacity

Clinical signs

- Urinary incontinence
 - Dribbling of urine
 - Loss of voluntary control
 - Urine-scalding dermatitis
- Abnormal micturition
 - Inability to urinate
 - Disruption of urine stream (dysuric sensation)
 - Stranguria/Dysuria
 - Abdominal pain/discomfort

Normal micturition

- Storage (filling) phase
 - Sympathetic (ANS): relaxes bladder detrusor muscle & increases internal urethral sphincter tone
- Somatic: external urethral sphincter (urethralis muscle)
- Stretch of bladder wall: sensory fibers to reflex & brain
- Voiding (emptying) phase
 - Parasympathetic (ANS): contraction of detrusor muscle
 - Inhibition of sympathetic & somatic urethral sphincters

Reprinted by permission from SUDZ Publishing, Copyright 2012, All rights reserved

Pasquini’s Guide to Small Animal Clinics is available from ZukuShop bookstore and SUDZ publishing
Renal Review - Azotemia, PU/PD, Urolithiasis, Incontinence, Glomerulonephropathy

Guide to Sm An Clinics, Pasquini, 3rd

Reprinted by permission from SUDZ Publishing, Copyright 2012, All rights reserved

Pasquini's Guide to Small Animal Clinics is available from ZukuShop bookstore and SUDZ publishing

Diagnosis urinary incontinence:
• History: very important - Questions to ask:
 - Chronology of progression?
 - Ability to voluntarily initiate & maintain urination?
 - Reproductive status (neutered or not)?
 - Trauma?
 - Age of onset?
 - Previous problems (especially urinary)?
 - Description of abnormality - night? dribbling? etc.
 - Continuous or intermittent? Amount passed?
 - Frequency of urination?
 - Current medication?
 - Dysuria, nocturia, hematuria?

• Physical exam:
 - Examine perineum for urine scalding
 - Palpation of urinary bladder before & after urination
 - Small bladder: bladder hypercontractility or ↓ urethral resistance
 - Distended bladder: ↑ urethral resistance or ↓ bladder contractility
 - Evaluate distention, tone, ease of expression
 - UMN - difficult
 - LMN - easy
 - Neurogenic exam: check integrity of sacral reflex arc (pudendal nerve [sensory & motor] & sacral cord segment)
 - Perineal reflex: pinch perineum = contraction of anal sphincter & ventroflexion of tail
 - Bulbospongiosus reflex: squeeze distal penis or vulva = constriction of anus
 - Rectal exam: prostate gland, anal tone, pelvic diaphragm, pelvic urethra, trigone of bladder
 - Observe urination: Measure residual volume after urination (catheterization) normal < 0.4 ml/kg

DDx:
• Causes of polyuria
• Causes of pollakiuria
• Causes of stranguria
• Causes of nocturia

• Blood values
 - ↑ BUN & creatinine - renal function
• Urinalysis in all incontinent animals
 - Urine culture (cystocentesis)
• R/O Polyuria/polydipsias which can result in urge incontinence
 - Diabetes mellitus, pyometra, hyperadrenocorticism & hypercalcemia

• Radiography:
 - Survey: for obvious abnormalities of bladder, urethra, pelvis or spine
 - Contrast radiographs
 - Excretory urogram
 - Positive contrast vaginogram
 - Vaginourethrography or retrograde urethrogram

• Vaginoscopy w/ or w/o new methylene blue dye (dogs); visualization of contrast for ectopic ureter
 - Check for: urachal diverticulum, bladder wall thickening, calculi, prostatic enlargement, urethral strictures, pelvis bone abnormalities

• Urodynamic studies for micturition disorders
 - Cystometrogram: bladder tone & volume, detrusor reflex
 - Urethral pressure profile: intra-urethral resistances

• Electromyography (EMG): coordination of detrusor & urethral sphincter by checking anal sphincter
<table>
<thead>
<tr>
<th>Condition</th>
<th>Cause</th>
<th>Clinical signs</th>
<th>Diagnosis</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neurogenic</td>
<td></td>
<td></td>
<td>No perineal reflex</td>
<td>No effective Tx</td>
</tr>
<tr>
<td>LMN - atonic bladder</td>
<td>Trauma - LMN</td>
<td>Continuous dribbling</td>
<td>Large, expressible bladder</td>
<td>Manually express tid</td>
</tr>
<tr>
<td></td>
<td></td>
<td>involuntary</td>
<td></td>
<td>± Bethanecho (Urecholine®), ABs</td>
</tr>
<tr>
<td></td>
<td>Trauma - UMN</td>
<td>Intermittent incontinence</td>
<td>+ Perineal reflex (hyperactive)</td>
<td>Intermittent catheterization</td>
</tr>
<tr>
<td></td>
<td></td>
<td>involuntary</td>
<td>Large turgid, nonexpressible bladder</td>
<td>ABs - frustrating</td>
</tr>
<tr>
<td></td>
<td>Trauma - ANS</td>
<td>Start & abrupt stop</td>
<td>CS, + Perineal reflex</td>
<td>♦ Alpha sympathetic tone</td>
</tr>
<tr>
<td></td>
<td></td>
<td>urination w/ stranguria</td>
<td>Large, nonexpressible bladder</td>
<td>- Phenoxybenzamine (Dibenzyline®)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Voluntary</td>
<td>Easily catheterized</td>
<td>- ± Bethanecho (Urecholine®)</td>
</tr>
<tr>
<td>Nonneurogenic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hormone-responsive</td>
<td>Older, spayed female</td>
<td>Voluntary control</td>
<td>Hx, Tx response</td>
<td>Diethylstilbestrol</td>
</tr>
<tr>
<td>incontinence</td>
<td></td>
<td>intermittent dribbling</td>
<td>Normal reflexes & bladder</td>
<td>± Phenylpropanolamine (Triaminio®)</td>
</tr>
<tr>
<td>Urethral incompentence</td>
<td>Stress</td>
<td>Voluntary control</td>
<td>Hx, Tx response</td>
<td>♦ Alpha sympathetic urethral tone</td>
</tr>
<tr>
<td></td>
<td></td>
<td>intermittent incontinence</td>
<td>Normal reflexes & bladder</td>
<td>- Phenylpropanolamine (Triaminio®)</td>
</tr>
<tr>
<td>Urge incontinence</td>
<td>UTI, FUS, etc.</td>
<td>Frequent small urinations</td>
<td>Hx, CS (UTI, FUS) - Tx response</td>
<td>Treat cystitis/FUS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Urine spraying, Stranguria</td>
<td>Hyperreflexive detrusor, normal bladder</td>
<td>Inhibit detrusor - Propantheline (Pro-Banthine®)</td>
</tr>
<tr>
<td>Atony over distention</td>
<td>Obstruction</td>
<td>Continuous dribbling - long</td>
<td>Large, flaccid bladder</td>
<td>Remove obstruction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>involuntary</td>
<td>- large residual urine volume</td>
<td>Indwelling catheter - Bethanecho (Urecholine®)</td>
</tr>
<tr>
<td>Paradoxical incontinence</td>
<td>Partial obstruction</td>
<td>Continuous dribbling - short</td>
<td>Large, turgid bladder (nonexpressible)</td>
<td>Remove obstruction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>involuntary</td>
<td>Normal reflexes</td>
<td>Indwelling catheter</td>
</tr>
<tr>
<td>Ectopic ureters</td>
<td>Young</td>
<td>Continuous dribbling</td>
<td>Hx (young), CS</td>
<td>Ureteral transposition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Voluntary urination</td>
<td>Bladder, reflexes normal</td>
<td>± Phenylpropanolamine (Triaminio®)</td>
</tr>
</tbody>
</table>

Reprinted by permission from SUDZ Publishing, Copyright 2012, All rights reserved

Pasquini's Guide to Small Animal Clinics is available from ZukuShop bookstore and SUDZ publishing
Renal Review - Azotemia, PU/PD, Urolithiasis, Incontinence, Glomerulonephropathy

Guide to Sm An Clinics, Pasquini, 3rd

Reprinted by permission from SUDZ Publishing, Copyright 2012, All rights reserved

Pasquini’s Guide to Small Animal Clinics is available from ZukuShop bookstore and SUDZ publishing
Renal Review - Azotemia, PU/PD, Urolithiasis, Incontinence, Glomerulonephropathy

Glomerulonephritis, GN, Immune complex glomerulonephritis
- Causes: unknown in most cases
 - 2° to inflammation/infectious dizes, neoplasia or other causes
- Pathophysiology:
 - Deposition of antigen-antibody complexes in glomeruli
 - Immune complexes changes permeability of glomerulus
- **Proteinuria & hypoproteinemia**
- Dogs over 5 years old, cats
- Familial - Dobermans?
- Reversible or irreversible

Prognosis: guarded

Amyloidosis
- Disposition of fibrillar glycoprotein in organs
 - Results in organ dysfunction
 - Dogs: disposition primarily in glomeruli
 - Results in protein losing glomerulonephropathy
 - Cats: disposition 1° in renal medullary interstitium
 - Results in chronic renal failure
- Causes:
 - Idiopathic
 - 2° to inflammatory of neoplastic process
 - Tissue injury stimulates liver amyloid precursor
 - Liver, spleen, & kidney primarily affected
 - Progressive kidney dysfunction
 - Familial form in Shar Pei, Abyssinian & possibly Beagles

Prognosis: poor

Nephrotic syndrome; NS
- Descriptive term, not a diagnosis - edema, ascites
- **Proteinuria, hypoalbuminemia, hypercholesterolemia & edema**
 - Proteinuria of sufficient magnitude to cause hypoalbuminemia
 - Onocytic pressure - edema
 - Hypercoagulopathy - loss of antithrombin III protein
 - Thromboembolism
 - Compromised immunological system
- Dogs & cats
- Cause:
 - Glomerulonephritis
 - Amyloidosis
- Most patients w/ glomerular diz don't develop nephrotic syndrome

Prognosis:
- Glomerulonephritis: Guarded
- Amyloidosis: Poor, diz relentlessly progressive to CRF & uremia
- Nephrotic syndrome: Guarded

Treatment:
- Difficult & often unrewarding
- Treat underlying cause if found
- Corticosteroids controversial, not recommended unless specific underlying diz indicates (SLE)
- **Diet**
 - Sodium restricted diets
 - Protein restricted diet (Hill’s k/d)
 - If proteinuria remains great consider protein supplementation (boiled egg)
- Enalapril (Enacard®) vasodilator, sodium retention in some, proteinuria hypertension in some
- Diuretics as needed w/ caution
- Anticoagulants TX if antithrombin III < 70% of normal & fibrinogen > 300 mg/dl
 - Aspirin, Coumadin®, heparin
- Vitamin B & C, Free choice water

Pasquini's Guide to Small Animal Clinics is available from [ZukuShop bookstore](http://ZukuShop-bookstore) and [SUDZ publishing](http://SUDZ-publishing)